
Characterizing the Relationship between Environment Layout
and Crowd Movement using Machine Learning

Weining Liu∗
Rutgers University

wl420@scarletmail.rutgers.edu

Kaidong Hu∗
Rutgers University

hukaidong@gmail.com

Sejong Yoon
The College of New Jersey

yoons@tcnj.edu

Vladimir Pavlovic
Rutgers University

vladimir@cs.rutgers.edu

Petros Faloutsos
York University

pfal@cse.yorku.ca

Mubbasir Kapadia
Rutgers University

mk1353@cs.rutgers.edu

ABSTRACT
Crowd simulations facilitate the study of how an environment
layout impacts the movement and behavior of its inhabitants. How-
ever, simulations are computationally expensive, which make them
infeasible when used as part of interactive systems (e.g., Computer-
Assisted Design software). Machine learning models, such as neural
networks (NN), can learn observed behaviors from examples, and
can potentially offer a rational prediction of a crowd’s behavior ef-
ficiently. To this end, we propose a method to predict the aggregate
characteristics of crowd dynamics using regression neural networks
(NN). We parametrize the environment, the crowd distribution and
the steering method to serve as inputs to the NN models, while a
number of common performance measures serve as the output. Our
preliminary experiments show that our approach can help users
evaluate a large number of environments efficiently.

CCS CONCEPTS
• Computing methodologies→ Neural networks; Modeling and
simulation;

KEYWORDS
Crowd Simulation, Neural Networks, Computer Aided Design
ACM Reference format:
Weining Liu, Kaidong Hu, Sejong Yoon, Vladimir Pavlovic, Petros Falout-
sos, and Mubbasir Kapadia. 2017. Characterizing the Relationship between
Environment Layout and Crowd Movement using Machine Learning. In
Proceedings of MIG 2017, UPC, Barcelona, Spain, November 2017, 6 pages.
https://doi.org/10.475/123_4

1 INTRODUCTION
Crowd simulation is used in a variety of applications such as disaster
and security simulations, architectural design, urban planning, and
first responder training. A key requirement is the need to predict
∗Both authors contributed equally to the paper

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MIG 2017, November 2017, UPC, Barcelona, Spain
© 2017 Association for Computing Machinery.
ACM ISBN 123-4567-24-567/17/06. . . $15.00
https://doi.org/10.475/123_4

and analyze the behavior of human crowds in previously unseen
situations (e.g., a change in environment layout, increased crowd
densities, or a stampede with increased levels of aggression from the
crowd members). However, it is often computationally expensive,
especially for applications that require the execution of a large num-
ber of simulations with different parameters (e.g, Computer-Aided
Design software). The motivation for this study is to explore the
potential of machine learning to predict the relationship between
the layout of an environment and the aggregate dynamics of the
crowd, without the need to run expensive simulations.

To meet these requirements, we propose to model the aggregate
dynamics of a virtual crowd and their relationship to the environ-
ment, by training a neural-network on simulated crowd movement
data, generated using state-of-the-art crowd simulation techniques
(e.g., Social Force [Helbing and Molnar 1995], and ORCA [van den
Berg et al. 2008]). We explore different NN architectures to system-
atically study their ability to fit the training data, while generalizing
to new situations. Our preliminary experiments demonstrate the
potential of neural networks to capture crowd characteristics, in
comparison to baseline linear regression models. While not the
focus of this paper, our approach is general and can be used with
real human crowd observations.

2 RELATEDWORK
There is a wealth of research in simulating crowds with numer-
ous approaches that rely on expert rules or examples for decision-
making. We only provide a short review below and refer the readers
to comprehensive surveys [Kapadia et al. 2015] for more details.

Rule-based systems date back to the work on flocking behaviors
using particle systems [Reynolds 1987, 1999]. These particle ap-
proaches are further refined in the social force models [Helbing and
Molnar 1995; Pelechano et al. 2007]. In some approaches, steering
is regarded as an integral part of the agents’ abilities. Geometric
algorithms are used [Guy et al. 2009; van den Berg et al. 2008] to
determine the velocity of next time to avoid a collision with another
agent. Agents have also used affordance fields [Kapadia et al. 2009]
to try to find safe passage to a goal. A cognitive system was used in
the work [Pelechano et al. 2007] which included utility functions
for desires, an attentional system to limit perception of the envi-
ronment, and a motor system to carry out actions. The system can
also switched between other steering algorithms [Singh et al. 2011]
to best suit an agent’s needs. When the environment is complex,
we have to employ path planning [Huang et al. 2014; Kallmann and
Kapadia 2016] to promise all agents can reach the target without

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

MIG 2017, November 2017, UPC, Barcelona, Spain W. Liu, et al.

being trapped. Some approach can solve path planning in dynamic
environments [Kallmann and Kapadia 2014; Kapadia et al. 2013a;
Ninomiya et al. 2015]. Parallelized approaches [Garcia et al. 2014;
Kapadia et al. 2013b] are also be use to accelerate the searching.

Data-driven techniques use local-space samples which are gen-
erated from observations to create steering policies. In [Lerner
et al. 2007] video samples were compiled into a database based
on which the agents steer. The work of [Lee et al. 2007] focused
more on recreating group dynamics than individual steering. The
work of [Torrens et al. 2011] used a more constrained state space
of discretized slices around an agent.

There has been prior works usingmachine learning algorithms to
understand or learn crowdmotion [Scovanner and Tappen 2009], in-
cluding those using data-driven techniques, e.g. [Bera et al. 2016a,b;
Metoyer and Hodgins 2003]. However, most of these approaches
are focused on human movement without much consideration on
the relationship between the environment and the crowd motion.
Our motivation is different, we aim to build a computation model to
predict the aggregated characteristics of crowd dynamics in relation
to changes in the environment.

3 OVERVIEW
We start with an environment that consists of mutable and im-
mutable elements. The parameters of the mutable elements and
their limits contribute to the parametrization domain. We also con-
figure a simulated crowd and parametrize its density and the initial
conditions, as well as properties of the agents. The union of all
parameters constitute the parametrization domain.

We then run a large number of simulations corresponding to a
dense sampling of the parametrization domain. For each simulation
we compute common metrics, like evacuation time and collisions,
that characterize the behavior of the crowd. As a result, we end
up with a large training set which provides a discrete mapping
between the parameter domain and crowd behavior metrics.

We use this training set to train a regression neural network
with fully connected layers. The trained model allows to predict
the behavior metrics for previously unseen environment and crowd
configurations at a fraction of the computational cost of a full crowd
simulation. We experiment with two different network structures,
and compare their performance against standard linear regression.

4 PROBLEM FORMULATION
We construct our problem as a mapping between environment
& crowd configurations and performance metrics computed from
simulating the crowds’ movement within the environment using
standard steering algorithms[Singh et al. 2009b]. The remainder of
this section presents the details of our formulation.

4.1 Environment Configuration
In our context, environments consist of mutable and immutable
elements. Typically the outer walls are fixed, while a number of in-
ternal elements are allowed to undergo rigid body transformations.
The 2D position (x ,y) of an element and its orientation with re-
spect to the x-axis, ϕ, form the element’s configuration parameters,
o = [x ,y,ϕ]. We group all such parameters into the environment
configuration vector, e = [o1, .., on], n is the number of parameters

in a layout. Environment Configuration is referred to as ’Env’ in
the tables in later chapters.

4.2 Crowd Configuration
For each simulation run, new agents are evenly distributed (with
random velocities) in predefined areas within an environment. The
numbers of all agents in those areas are recorded separately per
area and grouped into a vector, d = [d1, ..,dm], m is the number of
predefined areas. We refer to Crowd Configuration as ’Crowd’ in
the tables in later chapters.

4.3 Crowd Simulator
In this paper, we use two Crowd Simulation Algorithms, Social
Forces (SF) [Helbing and Molnar 1995] and ORCA, [Snape et al.
2012; van den Berg et al. 2008].

Each algorithm exposes a number of parameters that govern
the behavior of the agents. The Social Forces algorithm uses 12
parameters including the mass of agent, the personal space thresh-
old, observation radius, max speed, and factors of forces (repulsive
force, proximity force and frictional force) between two agents and
between one agent and one obstacle. The ORCA algorithm uses
4 parameters which can describe observation radius, safe time to
avoid collision between agents, safe time to avoid collision between
agent and obstacles, and max speed. We group all such parameters
into a = [a1, ...,ak], k is the number of parameters of simulator’s
parameters. We sample these parameters using the uniform ran-
dom for each simulation run, and record their values as part of the
input vector for the machine learning aspect of our work. Crowd
Simulator is referred to as ’AI’ in the tables in later chapters.

4.4 Configuration Space
The combined configurations described above constitute the do-
main or input space of ourmachine learning approach,D = [E,D,A].
For building A, the environment configuration contains 31 parame-
ters, the crowd configuration contains 10 parameters. The building
B uses 22 and 27 parameters to describe the environment configura-
tion and the crowd configuration, respectively. Social Force AI has
12 factors while ORCA has 4. Table 1 outlines the cardinality of the
different configuration spaces we used for training our NN models.

4.5 Crowd Analytics
The output space consists of four commonly used metrics that
measure different aspects of a simulator’s performance:

(1) Collisions (c). The average number of collisions over agents
that happened among agents and between agents and obsta-
cles.

(2) Traveling distance (l). The average distance over agents cov-
ered by the agents.

(3) Traveling time (t). The average time it took the agents to
reach their destinations.

(4) PLE (p). A measure proposed by[J. et al. 2010; Whittle 2014],
which measures the effort exerted by the agents to reach
their destinations. We compute it on the average.

All four metrics are generated by the SteerBench [Kapadia et al.
2011a; Singh et al. 2009a] module in SteerSuite [Singh et al. 2009b].

Learning Crowd Behavior with Neural Network MIG 2017, November 2017, UPC, Barcelona, Spain

Table 1: The number of samples in datasets for each config-
uration, as well as the number of parameters (dimension).
Each cell shows (size/dimension). For Env, Crowd, AI cat-
egories, only corresponding class, ’Environment’, ’Crowd’,
or ’Agent’ is treated as parameters, and we assign other
class with default values, make them constant to the whole
dataset. Some cells aremarked as ’-’, denotingwe donot have
the experiments that need to feed such data. For ’All’ class,
all were treated as parameters and varied in the dataset.

Map - AI Env Crowd AI All
A - SF 27501/31 13792/10 32164/12 18748/53

B - ORCA 4372/22 45867/27 6089/4 24281/53
A - ORCA - - - 24987/45
B - SF - - - 24658/61

5 PROPOSED MACHINE LEARNING
FRAMEWORK

In this section we describe in detail our machine learning approach
that results in a model that can efficiently predict the output vector
(metrics) given an arbitrary input configuration, D.

5.1 Training Data Generation
We statistically sample the parameter values of the configurations
D = [E,D,A] to generate a large corpus of training data. Given
a specific configuration, described in Section 4, we use SteerSuite
[Singh et al. 2009b] to simulate the crowd behavior. For each simu-
lation we compute the output metrics (Section 4), which together
with the configuration parameters form an element of the training
set.

The size of datasets can be seen in Table 1. We use 80% of the
dataset to train, and the rest 20% for testing. The size of the dataset
depends on the configuration and not the metrics.

5.2 Neural Network Architecture
We use a regression neural network to model the desired mapping.
The input of a NN model includes parameters of one or more Con-
figuration and a noise value, further described below. Regardless of
what aspects are to be taken into account for prediction (environ-
ment layout, crowd configuration, and/or agent configuration), the
input layer takes the input data in the same form as:

x = [e,d, a, z] = [o1,o2, ...,on ,d1,d2, ...,dm ,a1,a2, ...,ak , z]
⊤,

where z represents the noise. The noise value represents the ran-
domly set initial status of agents including position and velocity.
Though all agents’ initial status can affect the final result, we can
use one single noise scalar to represent the joint affect. The output
of NN models are a set of measures characterizing the aggregate
dynamics of the crowd behavior, such as evacuation time, average
distance, or energy expenditure.

Loss Function. We define ŷ as a prediction of a matrix C/D/P/T),
and y as the corresponding ground truth value. We use the root
mean square error (RMSE) between (ŷ) and (y) as our loss function
for training. The loss function L(ŷ, y) is computed as follows:

Figure 1: This figure shows the NN structures used in our ex-
periments. The left image shows the NN with only one hid-
den layer containing many Neurons (120). The right image
shows the NN with two smaller hidden layers (20 Neurons
each).

L(ŷ, y) =

√
1
N

∑
(ŷ − y)2 (1)

Training Method. We use Adam [Kingma and Ba 2014] for train-
ing our NN models. Adam is an algorithm for first-order gradient-
based optimization of stochastic objective functions, based on adap-
tive estimates of lower-order moments. The method is well suited
for problems that are large in terms of data and/or parameters, and
works well for non-stationary objectives and problems with very
noisy and/or sparse gradients. The hyper-parameters have intuitive
interpretations and typically require little tuning. We also employ
the dropout technique to reduce overfitting. We used 50,000 as the
maximum number of iterations for training the NN models. In our
experiments, we observe that the loss functions plateau at about
20,000 iterations.

Evaluation of Different Network Models. We tried 8 different NNs
including vanilla linear regression and single/double layer NN to
illustrate potential utility of our approach. Here, we present com-
parative results between linear regression and one selected NN
model. Possible network structures are given in Figure 1.

For the NN with one hidden layer, given the input x, the output
of the hidden layer, h is computed as follows:

h = Relu(W(0)⊺ · x + b(0)), (2)

whereW(0) is the weights of first layer, and b(0) is the bias of fist
layer. The final output, ŷ, is

ŷ =W(1)⊺ · h + b(1). (3)

where W(1) is the weights of output layer, and b(1) is the bias of
output layer.

For the NN with two hidden layers, the output is similarly calcu-
lated as follows:

h(0) = Relu(W(0)⊺ · x + b(0)), (4)

h(1) = Relu(W(1)⊺ · h(0) + b(1)), (5)

ŷ =W(2)⊺ · h(1) + b(2). (6)

MIG 2017, November 2017, UPC, Barcelona, Spain W. Liu, et al.

where W(0) is the weights of first layer, and b(0) is the bias of
first layer,W(1) is the weights of second layer, and b(1) is the bias
of second layer, W(2) is the weights of output layer, and b(2) is
the bias of output layer The above description assumes using the
default rectified linear activation function for training. However
other activation functions may also be used. Our experiments below
evaluate the impact of the activation functions, namely ReLU and
leaky ReLU, on the prediction accuracy of the trained networks.

5.3 Evaluation
We use three different measures for evaluating the fidelity of the
NN models. First, we use the standard RMS error for quantifying
prediction error. In addition, we compute the following measure
over the test dataset which normalizes the proportion of the RMSE
error with the mean value of the ground truth data:

A(ŷ, y) = 1.0 −

√
1
N

∑
(ŷ − y)2

µ
, (7)

where µ is the mean of the ground truth data. In the ideal case, A
= 1.0. A higher score means a better performance. Note that the
value of A may be negative.

We also use the R2 score [Magee 1990] to measure the quality
of the prediction. This score is the proportion of the variance in
the dependent variable that is predictable from the independent
variable.

R2(ŷ, y) = 1.0 −
1
N

∑
(ŷ − y)2

σ 2 , (8)

where σ is the standard deviation. In the ideal case, the R2 score =
1.0. A higher R2 score means a better prediction performance. Its
value may also be negative.

6 EXPERIMENTS
This section describes our preliminary experiments to evaluate the
prediction accuracy of our proposed model.

6.1 Preliminaries
We used two building blue-prints in our experiments. Obstacles
inside the buildings are parameterized to permit rigid transforma-
tions. Each building is divided into a number of areas, in which the
number of agents are sampled. We also sample the factors of AI
algorithms that determine the agents’ behavior. For the purpose of
our experiments, we use two representative steering algorithms,
Social Forces [Helbing and Molnar 1995] and ORCA [Snape et al.
2012; van den Berg et al. 2008].

The layout can be seen from Figure 2. The outline of the building
is fixed, while the inside obstacles can move and rotate. From the
default (a, c) layout, we use blue bexes to demonstrate obstacles
that can only move vertically or horizontally, green ones can rotate,
and reds can both translate and rotate. Building A is divided into
10 areas based on the region of rooms and halls, and Building B
is evenly divided into 27 areas. We use gray blocks to denote the
region of each area (can be seen from the default layouts), where
crowds of different densities can be generated.

(a) (b)

(c) (d)

Figure 2: Building configuration and corresponding simulation
cases. Left tow: Layouts corresponding to building A and building
B. right two: Selected simulating cases upon eachmap. Building lay-
outs with mutable elements shown with colored lines; the prede-
fined areas where agents are stochastically distributed are indicated
in gray blocks. Thin lines in simulation cases are agent traces when
running the simulator.

6.2 Implementation Details
We used SteerSuite [Singh et al. 2009b] to generate the training
data using SF [Helbing and Molnar 1995; Pelechano et al. 2007] and
ORCA [Snape et al. 2012] which were implemented as modules in
SteerSuite. We used the sampling technique described in [Kapadia
et al. 2011b] for training data generation. The metrics were com-
puted using SteerBench [Kapadia et al. 2011a; Singh et al. 2009a].
We trained the Neural Networks using TensorFlow.

6.3 Experiment Results
Here, three different workout sets have been selected to demon-
strate our training results. In Tables 2 and 3, we attempted to train
models that only sensible to one type of configurations, based on
either Env, crowd or AI class. SF steering algorithm or OCRA is
used as the steering algorithm, separately. Table 4 then records
result based on models that change all three type of configurations.
In each table, vanilla linear regression and 120 nodes single layer
neural network are selected for the comparison. As the result, we
can see that both neural network models provided competitive
performance in the context of different system complexities. In gen-
eral, most of tests are able to provide reasonable result in average
travel distance, PLE energy and traveling time predictions. Most
of them show less than 5 percent error rate to the amplification,
lead to a reliable result we can use in further application. However,
the relative weak result evaluated in R score shows the prediction
module cannot tune itself to give a precise prediction right now.
This tell us we still have space to improve our model, and asked us
for further investigations.

Learning Crowd Behavior with Neural Network MIG 2017, November 2017, UPC, Barcelona, Spain

Figure 3: Comparison of Performance Times to run crowd
simulations in order to compute metrics, or to query the
neural networks. NN query times are a fraction of the time
taken to run simulations and are independent of number of
agents to simulate.

6.4 Computational Performance
We verify our hypothesis on the efficiency of using neural networks
for predicting crowd measures. In this experiment, we compute
the crowd measures by running crowd simulations and by directly
querying the NN models. We repeat this experiment for increas-
ing number of agents. Crowd simulations takes several seconds
(even minutes) to compute and the time increases quadratically
with number of agents. At the same time, predicting values using
neural networks takes constant time in only milliseconds. Figure 3
illustrates the experiment results. For the consideration of time cost
in data-generating and training, we believe that by taking advan-
tage from the generalizablility behind neural networks, we could
reduce working expensiveness on such as optimization problem
using this module. Further experiments on this region are still on
process.

7 CONCLUSION
Our present experiments investigated using neural network predict-
ing performance matrix from environment and crowd configura-
tions, with expectation to replace the traditional simulator. The re-
sult show its possibility, and an absolute performance advancement
proves it potential values on processing compute dense works, such
as the building inner placement optimization. Consider its potential,
in the future, further neural network development and applying
them on a practical situation are necessary to the researchers.

ACKNOWLEDGMENTS
Yoon was supported in part by The College of New Jersey under
SOSA 2017-2019 grant. The work in this project was partially sup-
ported by the NSERC Discovery and Create programs (Canada).

REFERENCES
Aniket Bera, Sujeong Kim, and Dinesh Manocha. 2016a. Interactive Crowd-Behavior

Learning for Surveillance and Training. IEEE Computer Graphics and Applications
36, 6 (2016), 37–45. https://doi.org/10.1109/MCG.2016.113

Aniket Bera, Sujeong Kim, and Dinesh Manocha. 2016b. Online parameter learning
for data-driven crowd simulation and content generation. Computers & Graphics
55 (2016), 68–79. https://doi.org/10.1016/j.cag.2015.10.009

FM Garcia, M Kapadia, and NI Badler. 2014. GPU-based dynamic search on adaptive
resolution grids. IEEE International Conference on Robotics and Automation, ICRA
(2014), 1631–1638.

S. J. Guy, J. Chhugani, C. Kim, N. Satish, M. Lin, D. Manocha, and P. Dubey. 2009.
Clearpath: highly parallel collision avoidance for multi-agent simulation. ACM
SIGGRAPH/Eurographics SCA (2009), 177–187.

D. Helbing and P. Molnar. 1995. Social force model for pedestrian dynamics. Physical
review 51, 5 (1995), 4282.

T Huang, M Kapadia, NI Badler, and M Kallmann. 2014. Path planning for coherent
and persistent groups. IEEE International Conference on Robotics and Automation,
ICRA (2014), 1652–1659.

Guy S. J., Chhugani J., Curtis S., Dubey P., Lin M., and Manocha D. 2010. PLEdestrians:
a least-effort approach to crowd simulation. ACM SIGGRAPH/Eurographics SCA
(2010), 1–24.

M Kallmann and M Kapadia. 2014. Navigation meshes and real-time dynamic planning
for virtual worlds. Special Interest Group on Computer Graphics and Interactive
Techniques Conference, SIGGRAPH (2014), 3:1–3:81.

M. Kallmann and M. Kapadia. 2016. Geometric and discrete path planning for interac-
tive virtual worlds. ACM SIGGRAPH (2016), 1–29.

M Kapadia, A Beacco, FM Garcia, V Reddy, N Pelechano, and NI Badler. 2013a. Multi-
domain real-time planning in dynamic environments. The ACM SIGGRAPH /
Eurographics Symposium on Computer Animation, SCA (2013), 115–124.

M Kapadia, FM Garcia, CD Boatright, and NI Badler. 2013b. Dynamic search on the
GPU. IEEE/RSJ International Conference on Intelligent Robots and Systems (2013),
3332–3337.

M. Kapadia, N. Pelechano, J. Allbeck, and N. Badler. 2015. Virtual crowds: steps toward
behavioral realism. Vol. 7. Synthesis Lectures on Visual Computing. 1–270 pages.

M. Kapadia, S. Singh, W. Hewlett, and P. Faloutsos. 2009. Egocentric affordance fields
in pedestrian steering. ACM SIGGRAPH I3D (2009), 215–223.

Mubbasir Kapadia, Matthew Wang, Glenn Reinman, and Petros Faloutsos. 2011a.
Improved Benchmarking for Steering Algorithms. 4th International Conference on
Motion in Games (2011).

Mubbasir Kapadia, MatthewWang, Shawn Singh, Glenn Reinman, and Petros Faloutsos.
2011b. Scenario Space: Characterizing Coverage, Quality, and Failure of Steering
Algorithms. ACM SIGGRAPH Symposium on Computer Animation (2011).

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization.
CoRR abs/1412.6980 (2014). http://arxiv.org/abs/1412.6980

K. H. Lee, M. G. Choi, Q. Hong, and J. Lee. 2007. Group behavior from video: a data-
driven approach to crowd simulation. ACM SIGGRAPH/Eurographics SCA 1 (2007),
109–118.

A. Lerner, Y. Chrysanthou, and D. Lischinski. 2007. Crowds by Example. CGF 26, 3
(2007), 655–664.

L. Magee. 1990. R2 measures based on Wald and likelihood ratio joint significance
tests. The American Statistician (1990), 250.

R. A. Metoyer and J. K. Hodgins. 2003. Reactive pedestrian path following from
examples. CASA 20 (2003), 149–156.

K Ninomiya, M Kapadia, A Shoulson, FM Garcia, and NI Badler. 2015. Planning
approaches to constraint-aware navigation in dynamic environments. Journal of
Visualization and Computer Animation (2015), 119–139.

N. Pelechano, J. M. Allbeck, and N. I. Badler. 2007. Controlling individual agents in
high-density crowd simulation. ACM SIGGRAPH/Eurographics SCA 1 (2007), 108.

C. W. Reynolds. 1987. A distributed behavioral model. ACM SIGGRAPH 21, 4 (1987),
25–34.

C. W. Reynolds. 1999. Steering behaviors for autonomous characters. GDC, Citeseer
(1999), 763–782.

P. Scovanner and M. F. Tappen. 2009. Learning pedestrian dynamics from the real
world. In 2009 IEEE 12th International Conference on Computer Vision. 381–388.
https://doi.org/10.1109/ICCV.2009.5459224

Shawn Singh, Mubbasir Kapadia, Glenn Reinman, and Petros Faloutsos. 2009a. Steer-
Bench: A Benchmark Suite for Evaluating Steering Behaviors. Computer Animation
and Virtual Worlds (2009).

Shawn Singh, Mubbasir Kapadia, Glenn Reinman, and Petros Faloutsos. 2009b. Steer-
Suite: An Open Framework For Developing, Evaluating and Sharing Steering Algo-
rithms. International Conference on Motion in Games (2009).

S. Singh, M. Kapadia, G. Reinman, and P. Faloutsos. 2011. Footstep navigation for
dynamic crowds. CAVW 22, 2-3 (2011), 151–158.

J. Snape, S. J. Guy, D. Vembar, A. Lake, and M. C. Lin. 2012. Reciprocal collision
avoidance and navigation for video games. Game Developers Conf. (2012).

P. Torrens, X. Li, and W. A. Griffin. 2011. Building Agent-Based Walking Models
by Machine-Learning on Diverse Databases of Space-Time Trajectory Samples.
Transactions in GIS 15 (2011), 67–94.

Jur van den Berg, Ming C. Lin, and DineshManocha. 2008. Reciprocal velocity obstacles
for real-time multi-agent navigation. Proc. IEEE Int. Conf. Robotics and Automation
(2008), 1928–1935.

M. Whittle. 2014. Gait analysis: an introduction. Butterworth-Heinemann.

https://doi.org/10.1109/MCG.2016.113
https://doi.org/10.1016/j.cag.2015.10.009
http://arxiv.org/abs/1412.6980
https://doi.org/10.1109/ICCV.2009.5459224

MIG 2017, November 2017, UPC, Barcelona, Spain W. Liu, et al.

Table 2: Building A with Social Force AI. Each cell contains RMSE/A/R2 scores (the best result are boldly marked). This table
shows the result of vanilla linear regression (LR) as well as the result of NNs whose hidden layer contains 120 Neurons.

Categories Avg. Collisions (number) Avg. Traveling Distance (m) Avg. PLE energy (J/kg) Avg. Traveling Time (s)
Linear Regression

Env 2.53/ 0.5157/ 0.1549 7.02/ 0.9312/ 0.0077 24.18/ 0.9309/ 0.0205 4.96/ 0.9367/ 0.0310
Crowd 2.70/ 0.6391/ 0.8080 3.12/ 0.9672/ 0.7798 11.46/ 0.9649/ 0.7737 2.23/ 0.9696/ 0.7920
Agent 8.43/ 0.2570/ 0.3776 5.94/ 0.9386/ 0.3254 28.18/ 0.9158/ 0.1298 3.75/ 0.9499/ 0.2467

Single Layer NN with 120 nodes
Env 2.53/ 0.5150/ 0.1524 4.72/ 0.9538/ 0.5519 12.86/ 0.9632/ 0.7230 4.11/ 0.9475/ 0.3349

Crowd 1.89/ 0.7480/ 0.9064 2.40/ 0.9747/ 0.8694 8.89/ 0.9728/ 0.8640 2.02/ 0.9724/ 0.8281
Agent 8.07/ 0.2887/ 0.4296 7.01/ 0.9275/ 0.0610 26.23/ 0.9216/ 0.2461 4.68/ 0.9376/ -0.1714

Table 3: Building B with ORCA AI. Each cell contains RMSE/A/R2 scores (the best results are boldly marked). This table shows
the result of standard linear regression (LR) as well as the results of NNs whose hidden layer contains 120 Neurons.

Categories Avg. Collisions (number) Avg. Traveling Distance (m) Avg. PLE energy (J/kg) Avg. Traveling Time (s)
Linear Regression

Env 1.92/ 0.8647/ 0.2346 1.83/ 0.9866/ 0.8105 6.86/ 0.9852/ 0.7851 1.72/ 0.9840/ 0.7818
Crowd 1.24/ 0.9131/ 0.8507 1.15/ 0.9915/ 0.9732 5.09/ 0.9889/ 0.9567 1.14/ 0.9892/ 0.9631
Agent 1.25/ 0.9121/ 0.8457 1.14/ 0.9915/ 0.9735 4.61/ 0.9899/ 0.9642 1.11/ 0.9895/ 0.9647

Single Layer NN with 120 nodes
Env 2.85/ 0.7990/ -0.6882 2.76/ 0.9798/ 0.5680 8.66/ 0.9814/ 0.6570 2.40/ 0.9777/ 0.5758

Crowd 1.25/ 0.9124/ 0.8481 1.82/ 0.9865/ 0.9332 6.03/ 0.9868/ 0.9391 1.57/ 0.9851/ 0.9299
Agent 1.70/ 0.8798/ 0.7118 1.98/ 0.9853/ 0.9207 5.16/ 0.9887/ 0.9551 1.94/ 0.9816/ 0.8929

Table 4: . (RMSE/A/R2) ofmetrics conditioned on all 3 configurations. SF-Ameans Social Force AI running in building A. ORCA-
B means ORCA AI running in building B. The numbers in the first column denote the architecture of NN models.

Categories Avg. Collisions (number) Avg. Traveling Distance (m) Avg. PLE energy (J/kg) Avg. Traveling Time (s)
Linear Regression

SF-A 11.32/ 0.0803/ 0.4760 9.68/ 0.9092/ 0.3124 37.80/ 0.8975/ 0.2815 6.50/ 0.9205/ 0.3232
SF-B 3.40/ -0.3247/ 0.2719 3.99/ 0.9709/ 0.7920 15.89/ 0.9658/ 0.7423 3.43/ 0.9669/ 0.7356

ORCA-A 7.05/ 0.6935/ 0.3759 8.36/ 0.9180/ 0.2810 33.76/ 0.9069/ 0.2363 24.22/ 0.7176/ 0.1619
ORCA-B 3.06/ 0.7785/ 0.3542 5.92/ 0.9565/ 0.4881 15.66/ 0.9672/ 0.7223 27.83/ 0.7467/ -0.0159

Single Layer NN with 120 nodes
SF-A 10.54/ 0.1434/ 0.5455 10.30/ 0.9034/ 0.2212 39.43/ 0.8930/ 0.2182 6.99/ 0.9145/ 0.2165
SF-B 3.75/ -0.4576/ 0.1186 6.67/ 0.9514/ 0.4182 19.78/ 0.9575/ 0.6008 5.27/ 0.9491/ 0.3750

ORCA-A 6.39/ 0.7224/ 0.4878 6.42/ 0.9371/ 0.5763 23.58/ 0.9350/ 0.6273 22.92/ 0.7328/ 0.2499
ORCA-B 3.02/ 0.7814/ 0.3714 5.95/ 0.9563/ 0.4831 16.21/ 0.9661/ 0.7027 26.98/ 0.7545/ 0.0454

Table 5: Optimized metric values using NNs / related metric values computed by simulating the optimized environment.

case Avg. Collisions (num) Avg. Distance (m) Avg. PLE energy (J/kg) Avg. Time (s)
120 SF A -35.81/ 14.6 90.05/ 88.47 309.64/ 295.21 70.13/ 76.84
40-40 SF A 3.19/ 3.38 87.76/ 110.20 264.62/ 328.03 59.64/ 84.11

20-20 ORCA B 9.38/ 11.71 97.33/ 128.41 331.14/ 429.07 58.94/ 100.85
40-40 ORCA B 8.23/ 8.89 90.48/ 127.86 326.38/ 444.64 71.66/ 98.89

Table 6: Computation time to perform optimizations using neural network predictions / running simulations.

case Collisions Distance PLE Time
120 SF A 256s/ 4d14h 306s/ 22d16h 4.5s/ 19h 352s/ 21d2h
40-40 SF A 633s/ 4d17h 2.3s/ 9h 3.7s/ 13h 4.0s/ 11h

20-20 ORCA B 14s/ 2d22h 5.7s/ 28h 5.0s/ 22h 5.9s/ 25h
40-40 ORCA B 28s/ 6d5h 26s/ 5d22h 18s/ 3d16h 32s/ 6d17h

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	4 Problem Formulation
	4.1 Environment Configuration
	4.2 Crowd Configuration
	4.3 Crowd Simulator
	4.4 Configuration Space
	4.5 Crowd Analytics

	5 Proposed Machine Learning Framework
	5.1 Training Data Generation
	5.2 Neural Network Architecture
	5.3 Evaluation

	6 Experiments
	6.1 Preliminaries
	6.2 Implementation Details
	6.3 Experiment Results
	6.4 Computational Performance

	7 Conclusion
	Acknowledgments
	References

