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Abstract

We propose new methods to speed up convergence
of the Alternating Direction Method of Multipliers
(ADMM), a common optimization tool in the context
of large scale and distributed learning. The proposed
method accelerates the speed of convergence by au-
tomatically deciding the constraint penalty needed for
parameter consensus in each iteration. In addition, we
also propose an extension of the method that adaptively
determines the maximum number of iterations to up-
date the penalty. We show that this approach effectively
leads to an adaptive, dynamic network topology under-
lying the distributed optimization. The utility of the new
penalty update schemes is demonstrated on both syn-
thetic and real data, including an instance of the proba-
bilistic matrix factorization task known as the structure-
from-motion problem.

Introduction
The need for algorithms and methods that can handle large
data in a distributed setting has grown significantly in recent
years. Specifically, such settings may arise in two prototyp-
ical scenarios: (a) induced distributed data: distribute and
parallelize computationally demanding optimization tasks
to connected computational nodes using a data distributed
model and (b) intrinsically distributed data: data is collected
across a connected network of sensors (e.g., mobile devices,
camera networks), where some or all of the computation
can be performed in individual sensor nodes without re-
quiring centralized data pooling. Several distributed learn-
ing approaches have been proposed to meet these needs.
In particular, the alternating direction method of multiplier
(ADMM) (Boyd et al. 2010) is an optimization technique
that has been very often used in computer vision and ma-
chine learning to handle model estimation and learning
in either of the two large data settings (Liu et al. 2012;
Zhuang et al. 2012; Elhamifar et al. 2013; Zeng et al. 2013;
Wang et al. 2014; Lai et al. 2014; Boussaid and Kokkinos
2014; Miksik et al. 2014).

In the distributed optimization setting, the distributed
nodes process data locally by solving small optimization
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problems and aggregate the result by exchanging the (pos-
sibly compressed) local solutions (e.g., local model param-
eter estimates) to arrive at a consensus global result. How-
ever, the nature of distributed learning models, particularly
in the fully distributed setting where no network topology
is presumed, inherently requires repetitive communications
between the device nodes. Therefore, it is desirable to re-
duce the amount of information exchanged and simultane-
ously improve computational efficiency through faster con-
vergence of such distributed algorithms. Our methods can be
applied to any arbitrary distributed settings as well as paral-
lel computation that requires a certain centralized connec-
tion (e.g. a star topology).

To this end, the contributions of this paper are three
folds: (a) We propose two variants of ADMM for the
consensus-based distributed learning faster than the standard
ADMM. Our method extends an acceleration approach for
ADMM (He, Yang, and Wang 2000) by an efficient variable
penalty parameter update strategy. This strategy results in
improved convergence properties of ADMM and also works
in a fully distributed fashion. (b) We extend our proposed
method to automatically determine the maximum number
of iterations allocated to successive updates by employing a
budget management scheme. This strategy results in adap-
tive parameter tuning for ADMM, removing the need for
arbitrary parameter settings, and effectively induces a vary-
ing network communication topology. (c) We apply the pro-
posed method to a prototypical vision and learning prob-
lem, the distributed PPCA for structure-from-motion, and
demonstrate its empirical utility over the traditional ADMM.

Problem Description and Related Works
The problem we consider in this paper can be formulated
as a consensus-based optimization problem (Bertsekas and
Tsitsiklis 1989). A general consensus-based optimization
problem can be written as

arg min
θi

J∑
i=1

fi(θi), s.t. θi = θj ,∀i 6= j (1)

where we want to find the set of optimal parameters θi, i =
1..J that minimizes the sum of convex objective functions
fi(θi), where J denotes the total number of the functions.



𝜃𝜃

𝑧𝑧1
𝑧𝑧2 𝑧𝑧3

𝑧𝑧4

𝑧𝑧5
𝑥𝑥1

𝑥𝑥2 𝑥𝑥3
𝑥𝑥4

𝑥𝑥5

(a) Centralized

𝜃𝜃1
𝜌𝜌12

𝜃𝜃2

𝜃𝜃3 𝜃𝜃4

𝜃𝜃5
𝜌𝜌23

𝜌𝜌34

𝜌𝜌45

𝜌𝜌15

𝑧𝑧2

𝑥𝑥2

𝑧𝑧1

𝑧𝑧3 𝑧𝑧4

𝑧𝑧5

𝑥𝑥3 𝑥𝑥4

𝑥𝑥5

𝑥𝑥1

(b) Distributed

𝑧𝑧1

𝑥𝑥1
𝑧𝑧2

𝑧𝑧3 𝑧𝑧4

𝑧𝑧5

𝑥𝑥2

𝑥𝑥3 𝑥𝑥4

𝑥𝑥5

𝜃𝜃1

𝜃𝜃2

𝜃𝜃3 𝜃𝜃4

𝜃𝜃5

𝜌𝜌12
𝜌𝜌15

𝜌𝜌32
𝜌𝜌43

𝜌𝜌34

𝜌𝜌45
𝜌𝜌23

𝜌𝜌54

𝜌𝜌51
𝜌𝜌21

(c) Proposed

Figure 1: Centralized, distributed, and the proposed learning model in a ring network. The bigger size of ρij means that
corresponding constraint is more penalized.

This problem is typically a reformulation of a centralized op-
timization task arg min f(θ) with a decomposable objective
f(θ) =

∑J
i=1 fi(θ). Given the consensus formulation, the

original problem can be solved by decomposing the prob-
lem into J subproblems so that J processors can cooper-
ate to solve the overall problem by changing the equality
constraint to θi = θ̄ where θ̄ denotes a globally shared
parameter. The optimization can be approached efficiently
by exploiting the alternating direction method of multiplier
(ADMM) (Boyd et al. 2010).

The above consensus formulation is particularly suitable
for many optimization problems that appear in computer
vision. For instance, since fi(θi) can be any convex func-
tion, we can also consider a probabilistic model with the
joint negative log likelihood fi(θi) = − log p(xi, zi|θi) be-
tween the observation xi and the corresponding latent vari-
able zi. Assuming (xi, zi) are independent and identically
distributed, finding the maximum likelihood estimate of the
shared parameter θ̄ can then be formulated as the optimiza-
tion problem we described above for many exponential fam-
ily parametric densities. Moreover, the function need not be
a likelihood, but can also be a typical decomposable and reg-
ularized loss that occurs in many vision problems such as
denoising or dictionary learning.

It is often very convenient to consider the above con-
sensus optimization problem from the perspective of opti-
mization on graphs. For instance, the centralized i.i.d. Maxi-
mum Likelihood learning can be viewed as the optimization
on the graph in Fig. 1a. Edges in this graph depict func-
tional (in)dependencies among variables, commonly found
in representations such as Markov Random Fields (Miksik
et al. 2014) or Factor Graphs (Bishop 2006). In this con-
text, to fully decompose f(·) and eliminate the need for
a processing center completely, one can introduce auxil-
iary variables ρij on every edge to break the dependency
between θi and θj (Forero, Cano, and Giannakis 2011;
Yoon and Pavlovic 2012) as shown in Fig. 1b. This gen-
eralizes to arbitrary graphs, where the connectivity struc-
ture may be implied by node placement or communication
constraints (camera networks), imaging constraints (pixel
neighborhoods in images or frames in a video sequence), or
other contextual constraints (loss and regularization struc-
ture).

In general, given a connected graph G = (V, E) with the
nodes i, j ∈ V and the edges eij = (i, j) ∈ E , the consensus
optimization problem becomes

min
∑
i∈V

fi(θi), s.t. θi = ρij , ρij = θj , j ∈ Bi. (2)

Solving that problem is equivalent to optimizing the aug-
mented Lagrangian L(Θ) =

∑
i∈V Li(Θi),

Li(Θi) = fi(θi) +
∑
j∈Bi

{
λ>
ij1(θi − ρij) + λ>

ij2(ρij − θj)
}

+
η

2

∑
j∈Bi

{
‖θi − ρij‖2 + ‖ρij − θj‖2

}
, (3)

where Θ = {Θi : i ∈ V}, Θi = {θi, ρi, λi} are parameters
to find, λi = {λij1, λij2 : j ∈ Bi}, λij1, λij2 are Lagrange
multipliers,Bi = {j|eij ∈ E} is the set of one hop neighbors
of node i, η > 0 is a fixed scalar penalty constraint, and
‖ · ‖ is induced norm. The ADMM approach suggests that
the optimization can be done in coordinate descent fashion
taking gradient of each variable while fixing all the others.

Convergence Speed of ADMM
The currently known convergence rate of ADMM isO(1/T )
where T is the number of iterations (He and Yuan 2012).
Even though O(1/T ) is the best known bound, it has been
observed empirically that ADMM converges faster in many
applications. Moreover, the computation time per each iter-
ation may dominate the total algorithm running time. Thus
many speed up techniques for ADMM have been proposed
that are application specific. One way is to come up with
a predictor-corrector step for the coordinate descent (Gold-
stein et al. 2014) using some available acceleration method
such as the accelerated gradient method (Nesterov 1983). It
guarantees quadratic convergence for strongly convex fi(·).
Another way is to replace the gradient descent optimization
with a stochastic one (Ouyang et al. 2013; Suzuki 2013).
This approach has recently gained attention as it greatly re-
duces the computation per iteration. However, these meth-
ods usually require the coordinating center node thus may
not readily applicable to the decentralized setting. Moreover,
we want to preserve the application range of ADMM and
avoid introducing additional assumptions on fi(·).



One way to improve convergence speed of ADMM is
through the use of different constraint penalty in each iter-
ation. For example, a variant of ADMM with self-adaptive
penalty (He, Yang, and Wang 2000) improved the conver-
gence speed as well as made its performance less dependent
on initial penalty values. The idea is to change the constraint
penalty taking account of the relative magnitudes of primal
and dual residuals of ADMM as follows

ηt+1 =


ηt · (1 + τ t) , if ‖rt‖2 > µ‖st‖2
ηt · (1 + τ t)−1 , if ‖st‖2 > µ‖rt‖2
ηt , otherwise

(4)

where t is the iteration index, µ > 1, τ t > 0 are param-
eters, rt and st are the primal and dual residuals, respec-
tively (Please refer extended version of this paper (Song,
Yoon, and Pavlovic 2015) for their definitions). The pri-
mal residual measures the violation of the consensus con-
straints and the dual residual measures the progress of the
optimization in the dual space. This update converges when
τ t satisfies

∑∞
t=0 τ

t < ∞, i.e. we stop updating ηt after
a finite number of iterations. Typical choice for parameters
are suggested as µ = 10 and τ t = 1 at all t iterations.
The strength of this approach is that conservative changes in
the penalty are guaranteed to converge (Rockafellar 1976;
Boyd et al. 2010). However, like other ADMM speed up
approaches mentioned above, this update scheme relies on
the global computation of the primal and the dual residuals
and requires the ηt stored in nodes to be homogeneous over
entire network thus it is not a fully decentralized scheme.
Moreover, the choice of parameters as well as the maximum
number of iterations require manually tuning.

Proposed Methods
We present our proposed ADMM penalty update schemes
in three steps. First, we extend the aforementioned update
scheme of (4) to be applicable on fully decentralized set-
ting. Next, we propose the novel penalty parameter update
strategy for ADMM speed up that does not require manual
tuning of τ t. Finally, we extend the strategy so that we can
automatically select the maximum number of penalty update
iterations.

ADMM with Varying Penalty (ADMM-VP)
Throughout the paper, the superscript t in all terms with sub-
script i denote either the objective function or parameter at
t-th iteration for node i. In order to extend (4) for a fully
distributed setting, we first introduce ηti , the penalty for i-th
node at t-th iteration. Next, we need to compute local primal
and dual residuals for each node i. In the fully distributed
learning framework of (Forero, Cano, and Giannakis 2011;
Yoon and Pavlovic 2012), the dual auxiliary variable van-
ishes from derivation. However, to compute the residuals,
we need to keep track of the dual variable, which is es-
sentially the average of local estimates, explicitly over it-
erations. The squared residual norms for the i-th node are
defined as

‖rti‖22 = ‖θti − θ̄ti‖22, ‖sti‖22 = (ηti)
2‖θ̄ti − θ̄t−1i ‖22, (5)

where θ̄ti = (1/|Bi|)
∑
j∈Bi

θtj . Note the difference from the
standard residual definitions for consensus ADMM (Boyd
et al. 2010), used in (4), where the dual variable is consid-
ered as a single, globally accessible variable, θ̄t instead of
local θ̄ti . This allows each node to change its ηti based on
its own local residuals. The penalty update scheme is sim-
ilar to (4) but ηt, ‖rt‖2 and ‖st‖2 are replaced with ηti ,
‖rti‖2 and ‖sti‖2, respectively. Lastly, the original adaptive
penalty ADMM (He, Yang, and Wang 2000) stopped chang-
ing ηt after t > 50. However, in ADMM-VP, if we stop the
same way, we end up with heterogeneously fixed penalty
values which impacts the convergence of ADMM by yield-
ing heavy oscillations near the saddle point. Therefore we
reset all penalty values in all nodes to a pre-defined value
(e.g. η0, the initial penalty parameter) after a fixed number
of iterations. As we fix the penalty values homogeneously
after a finite number of iterations, it becomes the standard
ADMM after that point thus the convergence of ADMM-VP
update is guaranteed.

ADMM with Adaptive Penalty (ADMM-AP)
We further extend ηi by introducing a bi-directional graph
with a penalty constraint parameter ηij specific to directed
edge eij from node i to j. The modified augmented La-
grangian Li is similar to (3) except that we replace η with
ηij . The penalty constraint controls the amount each con-
straint contributes to the local minimization problem. The
penalty constraint parameter ηij is determined by evaluat-
ing the parameter θj from node j with the objective function
fi(·) of node i as

ηt+1
ij =

{
η0 · (1 + τ tij) , if t < tmax

η0 , otherwise
(6)

where tmax is the maximum number of iterations for the
update as proposed in (He, Yang, and Wang 2000) and

τ tij =
κti(θ

t
i)

κti(θ
t
j)
− 1 , κti(θ) =

(
f ti (θ)− fmini

fmaxi − fmini

+ 1

)
, (7)

fmaxi = max{f ti (θti), f ti (θtj) : j ∈ Bi} ,
fmini = min{f ti (θti), f ti (θtj) : j ∈ Bi} . (8)

The interpretation of this update strategy is straightforward.
In each iteration t, each i-th node will evaluate its objective
using its own estimate of θti and the estimates from other
nodes θtj (we use ρtij instead of actual θtj to retain local-
ity of each node from the neighbors). Then, we assign more
weight to the neighbor with better parameter estimate for the
local fi(·) (i.e. larger penalty ηtij if fi(θj) < fi(θi)) with the
above update scheme. The intuition behind the ADMM-AP
update is to emphasize the local optimization during early
stages and then deal with the consensus update at later, sub-
sequence stages. If all local parameters yield similarly val-
ued local objectives fi(·), the onus is placed on consensus.
This makes ADMM-AP different from pre-initialization that
does the local optimization using the local observations and
ignores the consensus constraints.

Note that unlike the update strategy of (4), we do not need
to specify τ t and the update weight is automatically chosen



according to the normalized difference in the local objective
evaluation among neighboring parameters. The proposed al-
gorithm also emphasizes the objective minimization over the
minimization that solely depends on the norms of primal and
dual residuals of constraints. The hope is that we not only
achieve the consensus of the parameters of the model but
also a good estimate with respect to the objective.

On the other hand, the convergence property of (He, Yang,
and Wang 2000) still holds for the proposed algorithm. Fol-
lowing Remark 4.2 of (He, Yang, and Wang 2000), the re-
quirement for the convergence is to satisfy the update ratio
to be fixed after some tmax <∞ iterations.

Moreover, the proposed update ensures bounding by
ηt+1
ij /ηtij ∈ [0.5, 2], which matches with the increase and

decrease amount suggested in the literature (He, Yang, and
Wang 2000; Boyd et al. 2010). One may use tmax = 50 as
in (He, Yang, and Wang 2000).

ADMM with Network Adaptive Penalty
(ADMM-NAP)
To extend the proposed method for automatically deciding
the maximum number of penalty updates, the penalty update
for the ADMM becomes

ηt+1
ij =

{
η0 · (1 + τ tij) , if

∑t
u=1 |τuij | < T tij

η0 , otherwise.
(9)

Fig. 1c depicts how the proposed model have different struc-
tures from centralized and traditional distributed models,
and how nodes share their parameters via network.

In addition to the adaptive penalty update, the inequality
condition on the summation of τuij , u = 1..t encodes the
spent budget that the edge eij can change ηij . All nodes have
its upper bound T tij and everytime it makes a change to ηij , it
has to pay exactly the amount they changed. If the edge has
changed too much, too often, the update strategy will block
the edge from changing ηij any more.

The update scheme is guaranteed to convergence if T tij
is simply set to constant T for all i, j, t or if τ tij = 0 for
t > tmax. However, with a different objective function
and different network connectivity, a different upper bound
should be imposed. This is because a given upper bound T
or maximum iteration tmax could be too small for a certain
node to fully take an advantage of our adaptation strategy
or they could be too big so that it converges much slowly
because of the continuously changing ηtij . To this end, we
propose updating strategy for T tij as following:

T t+1
ij =


T tij + αnT , if

∑t
u=1 |τuij | ≥ T tij and

|fi(θti)− fi(θ
t−1
i )| > β

T tij , otherwise

(10)

where T 0
ij is set by an initial parameter T and α, β ∈ (0, 1)

are parameters. Whenever T t+1
ij > T tij , we increase n by 1.

Once
∑t
u=1 |τuij | ≥ T tij but its objective value is still sig-

nificantly changing, i.e. |fi(θti) − fi(θ
t−1
i )| > β, T t+1

ij is
increased by αnT . Note that the independent upper bound

T tij for each ηtij update on the edge eij makes it sensitive to
the various network topology, but it still satisfies the conver-
gence condition because limt→∞ T tij ≤

∑∞
n=1 α

n−1 T =
1

1−αT .

Combined Update Strategies
(ADMM-VP + AP, ADMM-VP + NAP)
Observing (4) and the proposed update schemes (6) and (9),
one can easily come up with a combined update strategy by
replacing τ t in (4) with τ tij . Based on preliminary experi-
ments, we found that this replacement yields little utility. In-
stead, we suggest another penalty update strategy combining
ADMM-VP and ADMM-AP as

ηt+1
ij =


ηtij · (1 + τ tij) · 2 , if ‖rti‖2 > µ‖sti‖2
ηtij · (1 + τ tij) · (1/2) , if ‖sti‖2 > µ‖rti‖2
ηtij , otherwise

(11)

which we denote as ADMM-VP + AP. We reset ηtij = η0

when t > tmax. In order to combine ADMM-VP and
ADMM-NAP, we consider the summation condition of τ tij
as in (9). We denote this strategy as ADMM-VP + NAP.

The Choice of the Proposed Methods
The key difference between ADMM-AP and ADMM-NAP
is that the latter does not require tmax to be decided in
advance. If the best tmax is known for a certain applica-
tion, there is no significant benefit of ADMM-NAP over
ADMM-AP. However, in many real world problems, tmax

is not known and ADMM-NAP can be an effective option as
demonstrated in Fig. 3c.

Distributed Maximum Likelihood Learning
In this section, we show how our method can be applied to
an existing distributed learning framework in the context of
distributed probabilistic principal component analysis (D-
PPCA). D-PPCA can be viewed as fundamental approach
to a general matrix factorization task in the presence of po-
tentially missing data, with many applications in machine
learning.

Probabilistic Principal Component Analysis
The Probabilistic PCA (PPCA) (Tipping and Bishop 1999)
has many applications in vision problems, including struc-
ture from motion, dictionary learning, image inpainting, etc.
We here restrict our attention to the linear PPCA without
any loss of generalization. The centralized PPCA is formu-
lated as the task of projecting the source data x according
to x = Wz + µ + ε where x ∈ RD is the observation
column vector, z ∈ RM is the latent variable following
z ∼ N (0, I), W ∈ RD×M is the projection matrix that
maps x to z, µ ∈ RD allows non-zero mean, and the Gaus-
sian observation noise ε ∼ N (0, a−1I) with the noise pre-
cision a. When a−1 = 0, PPCA recovers the standard PCA.
The posterior estimate of the latent variable z given the ob-
servation x is p(z|x) ∼ N (M−1W>(x − µ), a−1M−1),
where M = W>W + a−1I. The parameters W, µ, and a
can be estimated using a number of methods, including SVD
and Expectation Maximization (EM) algorithm.



Distributed PPCA
The distributed extension of PPCA (D-PPCA) (Yoon and
Pavlovic 2012) can be derived by applying ADMM to the
centralized PPCA model above. Each node learns its local
copy of PPCA parameters with its set of local observations
Xi = {xin|n = 1..Ni}where xin denotes the n-th observa-
tion in i-th node and Ni is the number of observations avail-
able in the node. Then, they exchange the parameters using
the Lagrange multipliers and impose consensus constraints
on the parameters. The global constrained optimization is

min
Θi

− log p(Xi|Θi) s.t. Θi = ρΘ
ij , ρ

Θ
ij = Θj , (12)

where Θi = {Wi,µi, ai} is the set of local parameters and
ρΘ
ij = {ρW

ij , ρ
µ
ij , ρ

a
ij} is the set of auxiliary variables for the

parameters. For the details regarding how the decentralized
model is optimized, see (Yoon and Pavlovic 2012).

D-PPCA with Network Adaptive Penalty
The augmented Lagrangian applying the proposed ADMM
with Network Adaptive Penalty is similar to (Yoon and
Pavlovic 2012) except that η becomes ηij . with λi, γi,
βi are Lagrange multipliers for the PPCA parameters for
node i. The adaptive penalty constraint ηtij controls the
speed of parameter propagation dynamically so that the
overall optimization empirically converges faster than (Yoon
and Pavlovic 2012). One can solve this optimization using
the distributed EM approach (Forero, Cano, and Giannakis
2011). The E-step of the D-PPCA is the same as centralized
counterpart (Tipping and Bishop 1999). The M-step is simi-
lar to (Yoon and Pavlovic 2012) except we use separate ηij
for each edge. The update formulas for the three parame-
ters are similar and an example update for µi can be found
in (Song, Yoon, and Pavlovic 2015). Once all the parame-
ters and the Lagrange multipliers are updated, we update ηij
and Tij using (9) and (10), respectively. The overall algorith-
mic steps for the D-PPCA with Network Adaptive Penalty is
summarized in (Song, Yoon, and Pavlovic 2015).

Experiments
We first analyze and compare the proposed methods
(ADMM-VP, ADMM-AP, ADMM-NAP, ADMM-VP + AP,
ADMM-VP + NAP) with the baseline method using syn-
thetic data. Next, we apply our method to a distributed struc-
ture from motion problem using two benchmark real world
datasets. For the baseline, we compare with the ADMM-
based D-PPCA (Yoon and Pavlovic 2012) denoted as ADMM
with fixed penalty ηt = η0. Unless noted otherwise, we used
η0 = 10. To assess convergence, we compare the relative
change of (12) to a fixed threshold (10−3 in this case) for
the D-PPCA experiments as in (Yoon and Pavlovic 2012).

Synthetic Data
We generated 500 samples of 20 dimensional observations
from a 5-dim subspace following N (0, I), with the Gaus-
sian measurement noise following N (0, 0.2 · I). For the
distributed settings, the samples are assigned to each node
evenly. All experiments are ran with 20 independent ran-
dom initializations. We measured the number of iterations to

convergence and the maximum subspace angle error versus
the ground truth defined as the maximum of subspace an-
gles between each node’s projection matrix and the ground
truth projection matrix. We examined the impact of different
graph topologies and different graph sizes. We tested three
network topologies: complete, ring and cluster (a connected
graph consists of two complete graphs linked with an edge).
For the graph size, we tested on 12, 16 and 20 nodes settings.

Top three plots in Fig. 2 depict results over varying num-
ber of nodes while fixing the graph topology as the com-
plete graph. We plot the median result out of the 20 inde-
pendent initializations. We observed that the speed up with
the proposed method, particularly for ADMM-VP and its
variants, becomes more significant as the number of nodes
increases. This suggests the proposed method can be of par-
ticular use as the size of an application problem increases.
Fig. 2c to Fig. 2e in the figure show the performance in
the context of different network topologies. Our proposed
methods converge faster or at the same rate as the standard
ADMM. In some cases, either the standard ADMM or our
methods could converge to a local optima, e.g. some of our
methods in Fig. 2c prematurely converged, however, they
still have very good performance that is less than 2 degree
of subspace angle. The proposed method works most ro-
bustly in the complete graph setting. In other words as the
graph connectivity increases, the convergence property of
the proposed method improves. Note also that ADMM-VP
works best in complete graph while ADMM-AP / NAP are
better than the ADMM-VP in weakly connected networks
(e.g. a ring which exhibits the sparsest connectivity result-
ing in long (error) propagation effects and, subsequently,
much variable behavior). This makes sense as ADMM-VP
depends on residual computation and the proposed local
residual computation become less accurate compared to the
complete graph when the global residual can be computed.

Distributed Affine Structure from Motion
We tested the performance of our method on five objects of
Caltech Turntable (Moreels and Perona 2007) and Hopkins
155 (Tron and Vidal 2007) dataset as in (Yoon and Pavlovic
2012). The goal here is to jointly estimate the 3D structure
of the objects as well as the camera motion, however in a
distributed camera network setting. The input measurement
matrix is defined as 2× F by N where F denotes the num-
ber of frames and N denotes the number of points. By ap-
plying PCA, we can decompose the input into the camera
pose Wi and the 3D structure E[zin], n = 1..Ni. For the
detailed experimental setting, refer to (Tron and Vidal 2011;
Yoon and Pavlovic 2012). As the performance measure, we
used the maximum subspace angle error versus the central-
ized SVD-reconstructed structure. The network setting as-
sumes five cameras on a complete graph.

Fig. 3 shows the result on the Caltech Turntable dataset.
First, we compare Fig. 3a and Fig. 3b. One can see that
when the graph is less connected (Fig. 3a), the proposed
adaptive penalty method can boost ADMM-VP which can-
not utilize the full residual information of fully connected
case (Fig. 3b), as explained in synthetic data experiments.
Next, we compare Fig. 3b and Fig. 3c. The network topolo-
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Figure 2: The comparison of proposed methods and the baseline ADMM using the subspace angle error of the projection matrix
with (a-c) different graph size and (c-e) different network topology.

gies are the same (complete) but tmax value required for
ADMM-VP, ADMM-AP, ADMM-VP + AP is different in
these two groups of experiments. When tmax = 50 (Fig. 3b),
all methods can accelerate throughout the iterations. How-
ever, when tmax = 5 (Fig. 3c), the methods that depend on
tmax cannot accelerate after 5 iterations thus showing be-
havior similar to the baseline ADMM. On the other hand,
ADMM-NAP based methods can accelerate by adaptively
modifying the maximum number of penalty updates. Note
that one can choose any small value of T and Tij is increased
automatically using (10).

For the Hopkins 155 dataset, we compared methods on
135 objects using the same approach as (Yoon and Pavlovic
2012). For each method considered, we computed the mean
number of iterations until convergence. Since some objects
in the dataset are point trajectories of non-rigid structure, it is
inevitable for simple linear models to fail for those objects.
Thus we omitted objects yielded more than 15 degrees when
calculating the mean. For each object, we tested 5 indepen-
dent random initializations. For ADMM-AP, ADMM-NAP
and ADMM-VP + NAP, we found no significant speed up
over the baseline ADMM. For ADMM-VP and ADMM-VP
+ AP, we could obtain 40.2%, 37.3% speed up, respectively
if we use complete network. In ring network, the amount of
improvement becomes smaller. This small or no improve-
ment of speed is mainly due to the fact that the baseline
ADMM converges fast enough (typically < 100 iterations)

thus there is little room for the proposed methods to speed
up the optimization. As observed from the synthetic experi-
ments and Caltech dataset, the acceleration of the proposed
methods occurs at the earlier iterations of the optimization.
Thus if one can come up with a better convergence checking
criterion depending on the application, the proposed meth-
ods can be a very viable choice due to its parameter-free
nature.

Conclusion
We introduced a novel adaptive penalty update methods
for ADMM that can be applied to consensus distributed
learning frameworks. Contrary to previous approaches, our
adaptive penalty update methods, ADMM-AP and ADMM-
NAP does not depend on the parameters that require man-
ual tuning. Using both synthetic and real data experiments,
we showed the empirical effectiveness of the methods over
the baseline. In addition, we found that the performance of
ADMM-VP decreases with weakly connected graphs, and
in those cases, ADMM-AP and ADMM-NAP can be useful.

The proposed methods do leave some room for improve-
ments. For the problems when the standard ADMM can con-
verge fast enough, the proposed methods may show less than
significant gains. A better convergence criterion may help
stop the proposed algorithms at earlier iterations (e.g. a cri-
terion that can stop algorithms to remove long tails in Fig. 2b
or Fig. 2c).
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Figure 3: The comparison of proposed methods and the baseline ADMM using the subspace angle error of the reconstructed
3D structure with one object in Caltech dataset (Standing). See Fig. 2 for the plot labels. More results on the other four objects
can be found in (Song, Yoon, and Pavlovic 2015).
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