
Decentralized Approximate Bayesian
Inference for Distributed Sensor Network

Behnam Gholami, Sejong Yoon and Vladimir Pavlovic
Rutgers, The State University of New Jersey

110 Frelinghuysen Road
Piscataway, NJ 08854-8019

{bb510, sjyoon, vladimir}@cs.rutgers.edu

Abstract
Bayesian models provide a framework for probabilistic
modelling of complex datasets. Many such models are
computationally demanding, especially in the presence
of large datasets. In sensor network applications, statis-
tical (Bayesian) parameter estimation usually relies on
decentralized algorithms, in which both data and com-
putation are distributed across the nodes of the network.
In this paper we propose a framework for decentralized
Bayesian learning using Bregman Alternating Direction
Method of Multipliers (B-ADMM). We demonstrate the
utility of our framework, with Mean Field Variational
Bayes (MFVB) as the primitive for distributed affine
structure from motion (SfM).

Introduction
The traditional setting for many machine learning algo-
rithms is the one where the model (e.g., a classifier or a re-
gressor, typically parametric in some sense) is constructed
from a body of data by processing this body in either batch
or online fashion. The model itself is centralized and the
algorithm has access to all model parameters and all data
points. However, in many application scenarios today it is
not reasonable to assume access to all data points because
they could be distributed over a network of sensors or pro-
cessing nodes. In those settings collecting and processing
data in a centralized fashion is not always feasible because
of several critical challenges.

First, in applications such as networks of cameras
mounted on vehicles, the networks are constrained by se-
vere capacity and energy constraints, considerably limit-
ing the node communications (Radke 2010; Tron and Vidal
2011). Second, in many distributed sensor network applica-
tions such as health care, ecological monitoring, or smart
homes, collecting all data at a single location may not be
feasible because of its sheer volume as well as potential pri-
vacy concerns. Lastly, many sensor network tasks need to be
performed in real time. Hence, processing data after collect-
ing all information from different nodes prohibits perform-
ing the tasks in real time. The size of the centralized data
would incur an insurmountable computational burden on the
algorithm, preventing real-time or anytime (Zilberstein and
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Russell 1993) processing often desired in large sensing sys-
tems (Giannakis et al. 2015).

Distributed sensor networks provide an application setting
in which distributed optimization tasks (including machine
learning) that deal with some of the aforementioned chal-
lenges are frequently addressed (Radke 2010; Boyd et al.
2010). However, they are traditionally considered in a non-
Bayesian (often deterministic) fashion. Moreover, the data is
often assumed to be complete (not missing) across the net-
work and in individual nodes. As a consequence, these ap-
proaches usually obtain parameter point estimates by mini-
mizing a loss function based on the complete data and divid-
ing the computation into subset-specific optimization prob-
lems.

A more challenging yet critical problem is to provide full
posterior distributions for the parameters estimated in the
aforementioned distributed settings. Such posteriors have
the major advantage of characterizing the uncertainty in pa-
rameter learning and predictions, absent from traditional dis-
tributed optimization approaches. Another drawback of such
approaches is that they traditionally rely on batch process-
ing within individual nodes, unable to seamlessly deal with
streaming data frequently present in sensing networks. How-
ever, both the sequential inference and the data completion
would be naturally handled via the Bayesian analysis (Brod-
erick et al. 2013), if one could obtain full posterior parameter
estimates in this distributed setting. We also want our dis-
tributed Bayesian framemwork to work not only on discrete
variables (Paskin and Guestrin 2004) but also in continuous
cases.

In a recent work, Yoon and Pavlovic (2012) proposed a
new method that estimates parametric probabilistic models
with latent variables in a distributed network setting. The
performance of this model was demonstrated to be on par
with the centralized model, while it could efficiently deal
with the distributed missing data. Nevertheless, the approach
has several drawbacks.

First, its use of the Maximum Likelihood (ML) estimation
increases the risk of overfitting, which is particularly pro-
nounced in the distributed setting where each node works
with a subset of the full data. Second, the approach cannot
provide a measure of uncertainty around the estimated pa-
rameters that may be crucial in many applications, e.g., in
online learning for streaming data or in assessing confidence



of predictions.
In this paper we propose a Distributed Mean Field Vari-

ational Inference (D-MFVI) algorithm for Bayesian Infer-
ence in a large class of graphical models. The goal of our
framework is to learn a single consensus Bayesian model
by doing local Bayesian inference and in-network informa-
tion sharing without the need for centralized computation
and/or centralized data gathering. In particular, we demon-
strate D-MFVI on the Bayesian Principle Component Anal-
ysis (BPCA) problem and then apply this model to solve the
distributed structure-from-motion task in a camera network.

Bregman Alternative Direction Method of
Multipliers (B-ADMM)

ADMM has been successfully applied in a broad range of
machine learning applications (Boyd et al. 2010). ADMM
is canonically used for optimizing the following objective
function subject to an equality constraint:

arg min
x,z

f(x) + g(z), s.t. Ax+Bz = c, (1)

where x ∈ RD, z ∈ RM , and f and g are convex functions,
A,B and c are some fixed terms. ADMM iteratively opti-
mizes the augmented Lagrangian of (1), defined as:

Lp(x, z, y) = f(x) + g(z) + 〈y,Ax+Bz − c〉
+ η/2‖Ax+Bz − c‖22, (2)

where y is the dual variable, η > 0 is a penalty parame-
ter, and the goal of quadratic penalty term is to penalize the
violation of the equality constraint. The optimization is typ-
ically accomplished in a three-step update:

xt+1 = arg min
x

f(x) + 〈yt, Ax+Bzt − c〉

+ η/2‖Ax+Bzt − c‖22, (3)
zt+1 = arg min

z
g(z) + 〈yt, Axt+1 +Bz − c〉

+ η/2‖Axt+1 +Bz − c‖22, (4)
yt+1 = yt + η(Axt+1 +Bzt+1 − c), (5)

Bregman ADMM (B-ADMM) replaces the quadratic
penalty term in ADMM by a Bregman divergence (Wang
and Banerjee 2014). This generalization of Euclidean met-
ric will become essential when dealing with densities in the
exponential family and the D-MFVI. More precisely, the
quadratic penalty term in the x and z updates will be re-
placed by a Bregman divergence in B-ADMM:

xt+1 = arg min
x

f(x) + 〈yt, Ax+Bzt − c〉

+ ηBφ(c−Ax,Bzt), (6)
zt+1 = arg min

z
g(z) + 〈yt, Axt+1 +Bz − c〉

+ ηBφ(Bz, c−Axt+1), (7)
yt+1 = yt + η(Axt+1 +Bzt+1 − c), (8)

where Bφ : Θ × Θ → R+ is the Bregman divergence with
Bregman function φ (φ is a strictly convex function on a
closed convex set Θ) that is defined as:

Bφ(x, y) = φ(x)− φ(y)− 〈∇φ(y), x− y〉, (9)
where∇ denotes the gradient operator.

Figure 1: A graphical representation of the model of Eq. 10.
Blue-shaded circle denotes observation.

Distributed Mean Field Variational Inference
(D-MFVI)

We first explain a general parametric Bayesian model in a
centralized setting. Then, we derive its distributed form.

Centralized Setting
Consider a data set X of observed D-dimensional vectors
X = {xi ∈ RD}Ni=1 with the corresponding local latent
variables Z = {zi ∈ RM}Ni=1, a global latent variable W ∈
Rp and a set of fixed parameters Ω = [Ωz,Ωw]. The main
assumption of our class of models is the factorization of the
joint distribution of the observations, the global and the local
variables into a global term and a product of local terms:

P (X,Z,W |Ω) = P (W |Ωw)

N∏
i=1

P (xn|zn,W )P (zn|Ωz).

(10)
The graphical representation of this class of models is shown
in Fig 1. Given the observations, the goal is to compute
(the approximation of) the posterior distribution of the la-
tent variables, P (W,Z|X,Ω). For ease of computation, we
use an exponential family assumption of the conditional dis-
tribution of a latent variable given the observation and the
other latent variables:

P (W |X,Z,Ωw) =h(W ) exp
{
ψw(X,Z,Ωw)>T (W )

−Aw
(
ψw(X,Z,Ωw)

)}
, (11)

P (Z|X,W,Ωz) =

N∏
n=1

h(zn) exp
{
ψzn(xn,W,Ωz)

>T (zn)

−Az
(
ψzn(X,W,Ωz)

)}
, (12)

where h(.) denotes the base measure, A(.) denotes the log
partition function, and ψ(.) and T (.) denote the natural pa-
rameter and the sufficient statistics, respectively. The as-
sumed class of models contains many well known statisti-
cal models such as Bayesian PCA and Bayesian Mixture of
PCA (Ghahramani and Beal 2000), Latent Dirichlet Alloca-
tion (Blei, Ng, and Jordan 2003), Bayesian Gaussian Mix-
ture model (Attias 2000), Hidden Markov model (Fox et al.
2011; Paisley and Carin 2009), etc.



In many probabilistic models, due to the intractability of
computing the exact posterior distribution of the latent vari-
ables given the observations, one is often required to em-
ploy approximate inference algorithms. In this work we use
MFVI, which roots our strategy for distributed inference.
The details of this approach are described below.

Mean Field Variational Inference (MFVI)
The goal of the Variational Inference (VI) is to approximate
the true posterior distribution over the latent variables with a
simpler distribution indexed by a set of free parameters that
is the closest in KL divergence to the true posterior distri-
bution (Jordan et al. 1999; Hoffman et al. 2013). MFVI is a
subclass of VI that uses a family where all latent variables
are independent of each other. More precisely, MFVI con-
siders the following family of distributions as the approxi-
mate posterior distribution.

Q(Z,W ) =

N∏
n=1

Q(zn;λzn)Q(W ;λW ), (13)

where the form of Q(zn;λzn) and Q(W ;λW ) are set to be
in the same exponential family as the conditional distribu-
tionsP (W |X,Z,Ωw) (Eq. 11) andP (Z|X,W,Ωz) (Eq. 12)
and λZ = {λzn}Nn=1 and λW denote the variational pa-
rameters that are determined by maximizing the following
variational objective function (that is equivalent to minimiz-
ing the KL(Q(Z,W )||P (Z,W |X,Ωz,Ωw)) (Davis et al.
2007).

L(λZ , λW ) = EQ
[

logP (X,Z,W |Ωz,Ωw)
]
− EQ[logQ]

=

N∑
n=1

EQ(zn,W )

[
logP (xn|zn,W )

]
+

N∑
n=1

EQ(zn)

[
logP (zn|Ωz)

]
+ EQ(W )

[
logP (W |Ωw)

]
−

N∑
n=1

EQ(zn)[logQ(zn)]− EQ(W )[logQ(W )]. (14)

It should be noted that all terms of L(λZ , λW ) are functions
of the posterior parameters λZ , λW .

Distributed Setting
Consider G = (V,E) as an undirected connected graph
with vertices i, j ∈ V and edges eij = (i, j) ∈ E con-
necting the two vertices (Yoon and Pavlovic 2012). Each
i-th node is directly connected with 1-hop neighbors in
Bi = {j|eij ∈ E}. Now, assume that each i-th node has
its own set of data points Xi = {xin|n = 1, ..., Ni}, local
parameters Zi = {zin|n = 1, ..., Ni} and global parameter
Wi where xin ∈ RD is n-th data point and Ni is the num-
ber of samples collected in i-th node. Each i-th node infers
the approximate posterior distribution over both global and
local parameters locally, based on the available data in that
node.

Computing the approximate posterior distribution of the
local parameters ({Zi}|V |i=1) is not an issue in the distributed

setting due to the fact that the posterior distribution of each
local latent variable zn depends solely on the correspond-
ing observation xn and is independent of other observations
(X−n) conditioned on the global parameters. A naive ap-
proach for computing the posterior distribution of the global
parameter (W ) is to impose an additional consensus con-
straint on the global parameter in each node, W1 = W2 =
... = W|V |. The details of this approach are described below.

However, in a Bayesian framework, the parameters are
random variables and the notion of equality can be replaced
with equivalency. This, however, leaves several options open
(e.g., strict equality, equality in distribution, or almost sure
equality). Here, we propose imposing equivalency in distri-
bution, i.e., imposing equality constraints on the parameters
of the posterior distribution of the global variable in each
node, λW1 = λW2 = ... = λW|V | .

Similar to prior work (Yoon and Pavlovic 2012), for de-
coupling purposes, we define a set of auxiliary variables ρij ,
one for each edge eij . This now leads to the final distributed
consensus MFVI formulation, which can be easily shown
to be equivalent to the centralized MFVI optimization prob-
lem:

[λ̂Z , λ̂W ] = arg min
λZi

,λWi
:i∈V

− EQ
[

logP (X,Z,W |Ωz,Ωw)
]

+ EQ[logQ(Z,W )],

s.t. λWi
= ρij , ρij = λWj

, i ∈ V, j ∈ Bi. (15)

ADMM could be used to efficiently solve the above con-
strained optimization problem. More precisely, ADMM al-
ternatively updates the variables in a block coordinate fash-
ion by solving the augmented Lagrangian (using a linear and
a quadratic penalty term) of Eq. 15.

Using conjugate exponential family for prior and likeli-
hood distributions, each coordinate descent update in MFVI
can be done in closed form. However, the penalty terms
would be quadratic in the norm difference of (λWi

− ρij),
which may result in the non-analytic updates for {λWi

}|V |i=1.
Note that updating {λZi

}|V |i=1 can still be done in closed form
as they do not appear in the equality constraints.

To solve Eq. 15 efficiently, we propose to use B-ADMM
rather than standard ADMM. Since the global parameters
are the parameters of the natural exponential family distri-
butions, we propose to use the log partition function Aw(.)
of the global parameter as the Bregman function.

It is worth noting that Aw(.) is not a stricly convex
function in general, but, it is strictly convex if the expo-
nential family is minimal1. We can always achieve this by
reparametrization. Hence, using the minimal representation
of the exponential families, it is easy to show that the coordi-
nate descent steps Eq. 16 and Eq. 17 of B-ADMM for solv-
ing Eq. 15 have an analytic solution. Based on the proposed

1An exponential family is minimal if the functions ψ(.) and the
statistics T (.) each are linearly independent.



Bregman function, we obtain the updates for B-ADMM as

[λ
(t+1)
Z , λ

(t+1)
W ] =

arg min
λZi

,λWi
:i∈V

−
|V |∑
i=1

Ni∑
n=1

EQ(zin,Wi)

[
logP (xin|zin,Wi)

]
−
|V |∑
i=1

N∑
n=1

EQ(zin)

[
logP (zin|Ωz)

]
− 1

|V |

|V |∑
i=1

EQ(Wi)

[
logP (Wi|Ωw)

]
+

|V |∑
i=1

Ni∑
n=1

EQ(zin)[logQ(zin)]

+
1

|V |

|V |∑
i=1

EQ(Wi)[logQ(Wi)]

+
∑
i∈V

∑
j∈Bi

(
γ

(t)
ij1
>(λWi − ρ

(t)
ij ) + γ

(t)
ij2
>(ρ

(t)
ij − λWj )

)
+ η

∑
i∈V

∑
j∈Bi

BAw
(λWi

, ρ
(t)
ij ) (16)

ρ(t+1) = arg min
ρ

η
∑
i∈V

∑
j∈Bi

BAw
(ρij , λ

(t+1)
Wi

)

+
∑
i∈V

∑
j∈Bi

(
γ

(t)
ij1
>(λ

(t+1)
Wi

− ρij) + γ
(t)
ij2
>(ρij − λ(t+1)

Wj
)

)
,

(17)

γ
(t+1)
ijk = γ

(t)
ijk + η(λ

(t+1)
Wi

− ρ(t+1)
ij ), (18)

where i ∈ V, j ∈ Bi and γijk with k = 1, 2 are the Lagrange
multipliers.

The scalar value η is the penalty parameter that should be
determined in advanced (Boyd et al. 2010) or set separately
to improve convergence properties of B-ADMM. BAw

(., .)
denotes the Bregman divergence induced by Aw(.) and is
defined as:

BAw
(x, y) = Aw(x)−Aw(y)− 〈x− y,∇Aw(y)〉, (19)

where x(t) denotes the value of the parameter x at iteration t.
Since Bregman divergences are not necessarily convex in the
second argument, we cannot use the same BAw

(λWi
, ρ

(t)
ij )

for the Bregman penalization term in Eq. 17. Hence, Wang
and Banerjee proposed to use the Bregman divergence with
reverese of the parameters (BAw

(ρij , λ
(t+1)
Wi

)) and they
proved the convergence of the new update equations.

The intuition behind the proposed Bregman function is as
follows: based on the fact that the Bregman divergence (us-
ing log partition function as Bregman function) between two
parameters λ, λ′ of the same (minimal) exponential family
P(x) is equivalent to the reverse KL divergence between the
exponential families (Davis et al. 2007) and assuming that

ρij is the natural parameter of the same exponential family
as QλWi

(.), penalizing the deviation of the posterior param-
eter λWi from the parameter ρij using the Bregman diver-
gence BAw(λWi , ρij) is equivalent to penalizing the devi-
ation of the approximate posterior distribution QλWi

(Wi)

from the distribution Qρij (.) in KL sense. We can write this
formally as

BAw
(λ, λ′) = Aw(λ)−Aw(λ′)− 〈λ− λ′,∇Aw(λ′)〉

= KL(Pλ′(x),Pλ(x)) (20)

using the notations from previous section.

Case Study: Distributed Bayesian PCA
(D-BPCA)

In what follows, we derive D-MFVI in the context of
Bayesian PCA (Ghahramani and Beal 2000). Consider the
latent factor model with P (zn) = N (zn; 0, I). In Proba-
bilistic PCA (PPCA) model, the observed variable xn is then
defined as a linear transformation of zn with additive Gaus-
sian noise ε: xn = Wzn + µ + ε, where W ∈ RD×M ,
µ ∈ RD and ε is a zero-mean Gaussian-distributed vector
with precision matrix τ−1I , where I denotes the identity
matrix. The likelihood distribution is:

P (xn|zn,W, µ, τ) = N (xn;Wzn + µ, τ−1I), (21)

where n = 1, ..., N . Based on the above probabilistic for-
mulation of PCA, we can obtain a Bayesian treatment of
PCA by first introducing a prior distribution P (µ,W, τ) over
the parameters of the model. Second, we compute the corre-
sponding posterior distribution P (µ,W, τ |X) by multiply-
ing the prior by the likelihood function given by Eq. 21, and
normalizing.

There are two issues that must be addressed in this frame-
work: (i) The choice of the prior distribution, and (ii) The
formulation of a tractable procedure for computing the pos-
terior distribution. Typically, in BPCA, the prior distribu-
tions over parameters are defined such that they are indepen-
dent of each other apriori P (µ,W, τ) = P (µ)P (W )p(τ).
For simplicity, in this paper we assume that the data noise
precision τ is a fixed but unknown parameter. We define an
independent Gaussian prior over each row of W as

P (W |α) =

D∏
d=1

(
αd

2π
)M/2 exp{−1

2
αd(wd − w̄d)>(wd − w̄d)},

where wd is the d-th row of W , {w̄d}Dd=1 and {αd}Dd=1 are
the mean and the precision hyperparameters respectively.
Furthermore, we consider another Gaussian distribution as
the prior for µ, P (µ) = N (µ̄, θ−1I), where µ̄ and θ are the
mean and the precision hyperparameters respectively. Due
to the intractability of computing the exact posterior distri-
bution ∈ RD×M , we use MFVI. In order to apply MFVI to
Bayesian PCA we assume a fully factorized posterior Q of
the form

Q(W,Z, µ) =
D∏
d=1

M∏
m=1

Q(wdm)

N∏
n=1

Q(zn)

D∏
d=1

Q(µd).

Due to the use of conjugate priors forW,Z and µ, the poste-
rior distributions are Gaussian (Q(wdm) ∼ N (mw

dm, λ
w
dm),



Q(µd) ∼ N (mµ
d , λ

µ
dm), and Q(zn) ∼ N (mz

n,Λ
−1
n )) and

their update is equivalent to re-estimation of the correspond-
ing means and variances.

Distributed formulation
The distributed MFVI algorithm can be directly ap-
plied to this BPCA model. Specifically, W and µ are
global latent variables, and {zn}Nn=1 are the local la-
tent variables. The basic idea is to assign each sub-
set of samples to each node in the network, and do
inference locally in each node. By considering Ξi =
{(mw

dm)i, (λ
w
dm)i, (m

µ
d )i, (λ

µ
dm)i, (m

z
n)i, (Λn)i} as the set

of parameters for node i, the D-MFVI optimization now be-
comes

Ξ̂ = arg min
Ξi:i∈V

EQ(Wi,µi,Zi)[logQ(Wi, µi, Zi)]

−
|V |∑
i=1

EQ(Wi,µi,Zi)

[
logP (Xi, Zi,Wi|

τ, α, θ, µ̄, w̄1, ..., w̄d)
]

s.t. (mµ
d )i = (ρµd )ij , (ρµd )ij = (mµ

d )j ,

(mw
dm)i = (ρwdm)ij , (ρwdm)ij = (mw

dm)j ,

(λµd )i = (φµd )ij , (φµd )ij = (λµd )j ,

(λwdm)i = (φwdm)ij , (φwdm)ij = (λwdm)j ,

where i ∈ V, j ∈ Bi and {(ρµd )ij , (φ
µ
d )ij , (ρ

w
dm)ij , (φ

w
dm)ij}

are auxiliary variables. Due to the lack of space, we ex-
plain how to specify hyperparameters τ, α, θ, µ̄, w̄1, ..., w̄d
and present the coordinate descent update rules for solv-
ing the above problem in the extended version of this pa-
per (Gholami, Yoon, and Pavlovic 2015). Generalizing our
distributed BPCA (D-BPCA) to deal with missing data is
straightforward and follows Ilin and Raiko (2010).

Experimental Results
In this section, we first demonstrate the general convergence
properties of the D-BPCA algorithm on synthetic data. We
then apply our model to a set of Structure from Motion
(SfM) problems. We compared our distributed algorithm
with traditional SVD, Centralized PCA (PPCA) (Tipping
and Bishop 1999), Distributed PPCA (D-PPCA) (Yoon and
Pavlovic 2012), and Centralized BPCA (BPCA) (Ilin and
Raiko 2010).

Empirical Convergence Analysis
We generated synthetic data using a generative PPCA model
in Fig. 1 to show the convergence of D-BPCA in various
settings. Based on the results, D-BPCA is robust to topology
of the network, the number of nodes in the network, choice
of the parameter η, and both data missing-at-random (MAR)
and missing-not-at-random (MNAR) (Ilin and Raiko 2010)
cases. A detailed analysis of this evaluation can be found in
the extended version (Gholami, Yoon, and Pavlovic 2015).

D-BPCA for Structure from Motion (SfM)
In affine SfM, based on a set of 2D points observed from
multiple cameras (or views), the goal is to estimate the cor-

responding 3D location of those points, hence the 3D struc-
ture of the observed object as well as its motion (or, equiv-
alently, the motion of the cameras used to view the object).
A canonical way to solve this problem is the factorization
approach (Tomasi and Kanade 1992).

More precisely, by collecting all the 2D points into a mea-
surement matrix X of size #points× (2×#frames), we
can factorize it into a #points × 3 3D structure matrix W
and a 3 × (2 × #frames) motion matrix Z. SVD can be
used to find both W and Z in a centralized setting. PPCA
and D-PPCA can also estimate W and Z using the EM al-
gorithm (Yoon and Pavlovic 2012).

Equivalently, the estimates of W and Z can also be found
using our D-BPCA where W is treated as the latent global
structure and Z is the latent local camera motion. It is worth
noting that D-PPCA can only provide the uncertainty around
the motion matrix Z, while D-BPCA obtains additional esti-
mates of the variance of the 3D structure W . We now show
that our D-BPCA can be used as an effective framework for
distributed affine SfM. For all SfM experiments, the network
has the ring topology, with η = 10.

We equally partitioned the frames into 5 nodes to simulate
5 cameras, the convergence was set to 10−3 relative change
in objective of (15). We computed maximum subspace an-
gle between the ground truth 3D coordinates and the esti-
mated 3D structure matrix as the measure of performance
(for BPCA and D-BPCA, we used the posterior mean of 3D
structure matrix for the subspace angle calculation).

Synthetic Data (Cube) Similar to the synthetic experi-
ments in Yoon and Pavlovic (2012), we used a rotating unit
cube and 5 cameras facing the cube in a 3D space to gen-
erate synthetic data. In contrast to the setting in Yoon and
Pavlovic (2012), we rotated the cube every 3◦ over 150◦

clockwise to obtain additional views necessary for our on-
line learning evaluation, i.e. in this setting, each camera ob-
served 50 frames. Fig. 2a shows the performance of differ-
ent models in the case of noisy data (over 20 independent
runs with 10 different noise levels). As can be seen from the
figure, in the case of noisy data, D-BPCA consistently out-
performs D-PPCA, thanks in part to improved robustness to
overfitting.

For the MAR experiment, we randomly discarded 20% of
data points over ten independent runs. The average errors
were 1.41◦ and 1.01◦ for D-PPCA and D-BPCA, respec-
tively. The same experiment was done for the more challeng-
ing MNAR with the missing data generated by a realistic
visual occlusion process (hence, non-random). This yielded
errors of 17.66◦ for D-PPCA and 14.12◦ for D-BPCA re-
spectively. Again, D-BPCA resulted in consistently lower
errors than D-PPCA, although the error rates were higher
in the more difficult MNAR setting.

One particular advantage of the D-BPCA over D-PPCA
and the SVD counterparts is its ability to naturally support
online Bayesian estimation in the distributed sensing net-
work. We first used 10 frames in each camera as the first
minibatch of data. Then, we repeatedly added 5 more frames
to each camera in subsequent steps. Results over 10 differ-
ent runs with 1% noise in the data are given in Fig. 2b. Note
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Figure 2: Results for the cube synthetic data (crosses denote outliers).

Table 1: Results of Caltech dataset. All results ran 20 independent initializations.

Object BallSander BoxStuff Rooster Standing StorageBin
# Points 62 67 189 310 102
# Frames 30 30 30 30 30

Subspace angle between centralized SVD SfM and D-PPCA (degree)
Mean 1.4934 1.4402 1.4698 2.6305 0.4513

Variance 0.4171 0.4499 0.9511 1.7241 1.2101
Subspace angle between centralized SVD SfM and D-BPCA (degree)
Mean 0.9910 0.9879 1.3855 0.9621 0.4203

Variance 0.0046 0.0986 0.0080 0.0033 0.0044

Table 2: Missing data Results of Caltech dataset. All results
used 20 independent initializations. Results provide vari-
ances over various missing value settings. Scores are sub-
space angles between fully observable centralized SVD ver-
sus D-PPCA / D-BPCA.

MAR MNAR
D-PPCA Mean 4.0609 9.4920

Variance 1.2976 5.9624
D-BPCA Mean 2.2012 7.2187

Variance 1.3179 5.2853

that due to the non-Bayesian nature of the D-PPCA model, it
cannot easily be applied in the online setting. Fig. 2b demon-
strates that the subspace angle error of the online D-BPCA
closely follows centralized BPCA in accuracy.

Real Data. We applied our model to the Caltech 3D Ob-
jects on Turntable dataset (Moreels and Perona 2007) and
Hopkins155 dataset (Tron and Vidal 2007) to demonstrate

Table 3: Subspace angles (degree) between fully observ-
able centralized SVD and D-PPCA / D-BPCA for Hopkins
dataset. All results ran 5 independent initializations.

No-missing MAR
D-PPCA Mean 3.9523 13.4753

Variance 3.3119 12.9832
D-BPCA Mean 0.7975 6.4372

Variance 0.5684 5.0689

its usefulness for real data. Following Yoon and Pavlovic
(2012), we used a subset of the dataset which contains im-
ages of 5 objects for Caltech dataset, and 90 single-object se-
quences for Hopkins155 dataset. For both datasets, we used
the same setup as Yoon and Pavlovic (2012). The subspace
angles between the structure inferred using the traditional
centralized SVD and the D-PPCA and D-BPCA for Caltech
dataset are available in Table 1. We ran 20 independent ini-
tializations to obtain the mean and variance. 10% MAR and



MNAR results are also provided in the Table 2. We report
the average over all 5 objects for this part. As can be seen,
the D-BPCA performance is better than D-PPCA.

Average maximum subspace angle between D-PPCA, D-
BPCA and SVD for all selected 90 objects without missing
data and with 10% MAR are shown in Table 3 (we did not
perform MNAR experiments on Hopkins due to the fact that
the ground truth occlusion information is not provided with
the dataset). For this dataset, D-BPCA consistently has bet-
ter performance than D-PPCA. It should be noted that al-
though the subspace angle error is very large for MAR case
for both D-PPCA and D-BPCA, 3D structure estimates were
similar to that of SVD up to the orthogonal ambiguity.

Conclusion
In this paper we introduced a general approximate inference
approach using Mean Field Variational Inference for learn-
ing parameters of traditional centralized probabilistic mod-
els in a distributed setting. The main idea is to split the data
into different nodes, impose consensus constraints on the
posterior parameters of each node, and solve the constrained
variational inference using Bregman ADMM. We illustrated
this approach with BPCA for SfM application. Experimen-
tal results showed that Bayesian approaches show substan-
tial improvements over the traditional ML approach with an
additional benefit of natural online learning.
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