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ABSTRACT

In this working note, we present our approach and investigation
on the Predicting Media Memorability Task at MediaEval 2019. We
used original video frames and caption data from the provided
dataset, but extracted features ourselves using selected pretrained
networks. Several combinations of pretrained models and recurrent
networks were attempted to conduct a comparative study. Official
results, as well as our investigation on the task data are provided.
The best combination yielded a Spearman’s correlation score of
0.455 on short-term task and 0.218 on long-term task in the test set.

1 INTRODUCTION

MediaEval 2019 Predicting Media Memorability [2] is a continuing
multimedia analysis task following up from previous years of media
memorability [1] and interestingness prediction challenges [3]. The
dataset and evaluation setup are identical to the previous year’s.
It consists of two subtasks. In the first task, the system should
predict whether the viewer will remember a video in the short-
term (minutes). The second subtask was for the system to predict
whether the viewer will remember a video in the long-term (24-72
hours). Within the total of 10,000 videos that were annotated, 8,000
of them were provided as devset, and the remaining 2,000 videos
were reserved for the test-set. Details of the annotation protocol and
the prior work survey can be found in the task overview paper [2].

2 APPROACH

In our prior attempt [14], we tried to directly optimize a large neural
network combining various features using early fusion strategy.
Based on the lessons learned, we aim to find a good combination of
existing pretrained network models that covers multiple semantic
levels of the data. To achieve this goal, we investigate combina-
tions of four building blocks: (a) a recurrent neural network [11] to
capture sequential nature of the video data, (b) an image-based mem-
orability prediction model to take high level, task-relevant semantic
information into account, (c) a convolutional neural network-based
pretrained model to make sure we are not missing any fundamental
lower level information, and (d) video captions that readily contain
the highest semantic of the data. Encouraged by the high prediction
performance reported by other teams [6, 13], we examined the use
of following features in the process of developing our RNN-based
model. We used classic RNNs, as we could not find significant dif-
ferences in using LSTM [8] potentially due to our one layer RNN
model design [5, 9].

ResNet. ResNet [7], initially trained as an image classification
model, generates rich penultimate-layer output pertinent to the
semantic content of the image. We extracted ResNet output of three
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Figure 1: Proposed hybrid fusion framework for our com-
parative study on video memorability prediction. We used
three frames from each video to extract ResNet [7] features
and seven frames for AMNet [4] features.

frames (first, middle, and last of each video). These visual features
are used as sequential input into a one-layer RNN, whose output
is funneled through a series of fully connected layers before it
either regresses to a memorability score (in models where it alone
is used) or where it is part of a concatenation that contributes to a
memorability score (in an ensemble model).

AMNet. Compared to the ResNet, AMNet [4] captures relatively
higher-level information of the data. We extracted final image mem-
orability scores of each frame in a given video, seven of which are
supplied as sequential input to a respective RNN. Like ResNet, this
feature slips through a number of linear layers before contributing
to a final regression. We put one additional fully connected layer
after RNN to improve generalization performance.

Caption. As a high-level semantic feature, we considered the
videos caption data. As reported by multiple teams last year, caption
data seems to be effective in video memorability prediction tasks [1,
6, 14]. We had technical issues while implementing RNN-based
model using the caption data. For the interest of task schedule, we
resorted to discarding the RNN-based approach using the caption
feature in favor of creating a simple 25x100-dimensional word
embedding feature that funneled through subsequent linear layers.
This was functional, but results were far worse than the pretrained
Word2Vec word embeddings [10] we employed last year [14].

Hybrid Fusion with Recurrent Network. To combine the
features with different level of semantic information, we stacked
all features into a single vector and plug it into a linear penultimate
layer, that will regress to the ground truth memorability score. The
training was done in an end-to-end fashion, and we found that,
for feature combinations with RNN, RMSProp [12] seems to be the
most effective optimization method. We also tested models without
RNN for comparison, and found that Nesterov’s stochastic gradient
descent is the most effective method. For all experiments, we used
initial learning rate of 0.001, batch size was 20, and trained for 35
epochs.
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Table 1: Short term video memorability prediction results of
all combinations evaluated on dev-set. Upper half of the ta-
ble used RNN and the bottom half did not use RNN. Caption
feature is treated as a static feature.

Method 5-fold Cross Validation
Spearman’s p  Pearson’s p

ResNet (run1) 0.464 0.491
AMNet 0.421 0.454
ResNet+AMNet (run2) 0.470 0.503
ResNet+Caption 0.352 0.384
AMNet+Caption 0.307 0.338
ResNet+AMNet+Caption 0.443 0.480
ResNet 0.362 0.397
AMNet 0.422 0.453
Caption 0.151 0.085
ResNet+AMNet 0.374 0.408
ResNet+Caption 0.370 0.398
AMNet+Caption 0.214 0.152
ResNet+AMNet+Caption 0.374 0.405
Caption [14] (2-fold CV) 0.450 0.472

Table 2: Long term video memorability prediction results of
all combinations evaluated on dev-set. Upper half of the ta-
ble used RNN and the bottom half did not use RNN. Caption
feature is treated as a static feature.

Method 5-fold Cross Validation
Spearman’s p  Pearson’s p

ResNet (runl) 0.226 0.236
AMNet 0.213 0.231
ResNet+AMNet (run2) 0.225 0.243
ResNet+Caption 0.088 0.098
AMNet+Caption 0.098 0.107
ResNet+AMNet+Caption 0.217 0.232
ResNet 0.197 0.212
AMNet 0.216 0.232
Caption 0.060 0.044
ResNet+AMNet 0.201 0.217
ResNet+Caption 0.192 0.206
AMNet+Caption 0.097 0.079
ResNet+AMNet+Caption 0.198 0.215
Caption [14] (2-fold CV) 0.159 0.176

3 DISCUSSION AND OUTLOOK

Table 1 and Table 2 summarize our preliminary experiment results
on dev-set. We found two observations. First, it is obvious that
feature combinations with RNN significantly outperforms non-
RNN counterparts in most cases. This is a clear evidence that the
utilization of recurrent models is beneficial for video memorability
prediction tasks. Second, ResNet features are found pretty powerful
in both tasks, and often better than AMNet, that was trained for
predicting memorability scores, although it is possible to expect
slight synergistic improvement in cases.
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Table 3: Official results on test-set. Top two rows are short
term task results and bottom two rows are long term task
results. It is clear that image-based memorability prediction
model is not helpful for long term prediction task.

Method Testset Official Result
Spearman’s p  Pearson’s p

ResNet (runl) 0.454 0.475

ResNet+AMNet (run2) 0.455 0.493

ResNet (runl) 0.218 0.229
ResNet+AMNet (run2) 0.177 0.197
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Figure 2: Three frames from each of the three v1de0s from
(left) most difficult, (middle) moderate, and (right) easiest to
predict the short term memorability ranking for the best-

performed combination (AMNet + ResNet w/ RNN).
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Figure 3: Three frames from each of the three videos from
(left) most difficult, (middle) moderate, and (right) easiest
to predict the long term memorability ranking for the best-
performed combination (ResNet w/ RNN).

Table 3 shows our two best-performed models’ official results
on test-set. It is a well-known fact that long term memorability has
different intrinsic characteristics compared to short term memo-
rability, hence the ResNet + AMNet w/ RNN’s bad performance
in long term memorability task is not surprising. To obtain a bet-
ter understanding of the results, we sorted all videos in dev-set,
based on the absolute differences between predicted and ground
truth ranking of memorability scores. Figure 2 and Figure 3 show
the result of this analysis. Interestingly, it is quite clearly visible
that the semantics conveyed by videos in the two tables are al-
most opposite, i.e. videos that have easily-predictable short term
memorability scores have very similar semantic context (visible
frontal human faces) as videos that have difficult-to-predict long
term memorability scores, vice versa.

In the future, it would be very interesting to investigate the sim-
ilarities and differences between intrinsic semantic characteristics
of short and long term videos memorabilities.
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